

Secure and Dependable Storage Services In Cloud
Computing

CH.Venkata lakshmi, Jammi Ashok
Dept. of CSE, Guru Nanak Institute of Technology ,

Hyderabad

Abstract- Cloud storage enables users to remotely store their data
and enjoy the on-demand high quality cloud applications without the
burden of local hardware and software management. Though the
benefits are clear, such a service is also relinquishing users ’physical
possession of their outsourced data, which inevitably poses new
security risks towards the correctness of the data in cloud. In order to
address this new problem and further achieve a secure and
dependable cloud storage service, I propose in this paper a flexible
distributed storage integrity auditing mechanism, utilizing the
homomorphism token and distributed erasure-coded data.
The proposed design allows users to audit the cloud storage with very
lightweight communication and computation cost. The auditing
result not only ensures strong cloud storage correctness guarantee,
but also simultaneously achieves fast data error localization, i.e., the
Identification of misbehaving server. Considering the cloud data are
dynamic in nature, the proposed design further supports secure and
efficient dynamic operations on outsourced data, including block
modification, deletion, and append. Analysis shows the proposed
scheme is highly efficient and resilient against Byzantine failure,
malicious data modification attack, and even server colluding
attacks.

1. INTRODUCTION
Several trends are opening up the era of Cloud computing,
which is an Internet-based development and use of
computer technology. The ever cheaper and more powerful
processors, together with the software as a service (SaaS)
computing architecture, are transforming data centers into
pools of computing service on a huge scale. The increasing
network bandwidth and reliable yet flexible network
connections make it even possible that users can now
subscribe high quality services from data and software that
reside solely on remote data centers. Moving data into the
cloud offers great convenience to users since they don’t
have to care about the complexities of direct hardware
management.
A representative network architecture for cloud storage
service architecture is illustrated in Figur1
.

Three different network entities can be identified as
follows:
• User: an entity, who has data to be stored in the cloud and
relies on the cloud for data storage and computation, can be
either enterprise or individual customers.
• Cloud Server (CS): an entity, which is managed by
cloud service provider (CSP) to provide data storage
service and has significant storage space and computation
resources • Third Party Auditor (TPA): an optional TPA,
who has expertise and capabilities that users may not have,
is trusted to assess and expose risk of cloud storage
services on behalf of the users upon request. In cloud data
storage, a user stores his data through a CSP into a set of
cloud servers, which are running in a simultaneous,
cooperated and distributed manner. Data redundancy can
be employed with technique of erasure correcting code to
further tolerate faults or server crash as user’s data grows
in size and importance. Thereafter, for application
purposes, the user interacts with the cloud servers via CSP
to access or retrieve his data .In some cases, the user may
need to perform block level operations on his data.
1.1 EXISTING SYSTEM
 In existing system, the importance of ensuring the remote
data integrity has been highlighted by the following
research works under different system and security
models. These techniques, while can be useful to ensure
the storage correctness without having users possessing
local data, are all focusing on single server scenario. They
may be useful for quality-of-service testing, but does not
guarantee the data availability in case of server failures.
Although direct applying these techniques to distributed
storage (multiple servers) could be straightforward, the
resulted storage verification overhead would be linear to
the number of servers.
1.2 PROBLEMS IN EXISTING SYSTEM
 However, while providing efficient cross server storage
verification and data availability insurance, these schemes
are all focusing on static or archival data.
 As a result, their capability of handling dynamic data
remains unclear, which inevitably limits their full
applicability in Server storage scenarios.

2. RELATED WORK
Juels et al. described a formal “proof of retrievability”
(POR) model for ensuring the remote data integrity. Their
scheme combines spot-checking and error correcting code
to ensure both possession and retrievability of files on
archive service systems. Shacham et al. built on this model
and constructed a random linear function based
homomorphic authenticator which enables unlimited

CH.Venkata lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5374-5377

www.ijcsit.com 5374

number of challenges and requires less communication
overhead due to its usage of relatively small size of BLS
signature. Ateniese et al. defined the “provable data
possession” (PDP) model for ensuring possession of file on
untrusted storages. Their scheme utilized public key based
homomorphic tags for auditing the data file. However, the
pre-computation of the tags imposes heavy computation
overhead that can be expensive for an entire file. In their
subsequent work, Ateniese et al. described a PDP scheme
that uses only symmetric key based cryptography. This
method has lower-overhead than their previous scheme
and allows for block updates, deletions and appends to the
stored file, which has also been supported in our work.
However, their scheme focuses on single server scenario
and does not provide data availability guarantee against
server failures, leaving both the distributed scenario and
data error recovery issue unexplored. The incremental
cryptography work done by Bellare et al. also provides a
set of cryptographic building blocks such as hash, MAC,
and signature functions that may be employed for storage
integrity verification while supporting dynamic operations
on data. Schwarz et al. proposed to ensure static file
integrity across multiple distributed servers, using
erasure-coding and block level file integrity checks. We
adopted some ideas of their distributed storage verification
protocol. However, our scheme further support data
dynamics and explicitly study the problem of misbehaving
server identification

3.0 METHODS
3.1 Challenge Token Pre-computation:
In order to achieve assurance of data storage correctness
and data error localization simultaneously, our scheme
entirely relies on the pre-computed verification tokens.
The main idea is as follows: before file distribution the user
pre-computes a certain number of short verification tokens
on individual vector G(j) (j Є {1, . . . , n}), each token
covering a random subset of data blocks. Later, when the
user wants to make sure the storage correctness for the data
in the cloud, he challenges the cloud servers with a set of
randomly generated block indices. Upon receiving
challenge, each cloud server computes a short “signature”
over the specified blocks and returns them to the user. The
values of these signatures should match the corresponding
tokens pre-computed by the user. Meanwhile, as all servers
operate over the same
subset of the indices, the requested response values for
integrity check must also be a valid codeword determined
by secret matrix P.
Algorithm 1 Token Pre-computation
1: procedure
2: Choose parameters l, n and function f, Ø;
3: Choose the number t of tokens;
4: Choose the number r of indices per verification;
5: Generate master key KPRP and challenge key kchal;
6: for vector G(j), j ← 1, n do
7: for round i← 1, t do
8: Derive αi = fkchal (i) and k(i)

prp from KPRP .
9: Compute v(j) = Σ

r
q=1 α

q
i*G(j)[Ø k(i)

prp (q)]
10: end for

11: end for
12: Store all the vi’s locally.
13: end procedure
Suppose the user wants to challenge the cloud servers t
times to ensure the correctness of data storage. Then, he
must pre-compute t verification tokens for each G(j) (jЄ{1,
. . . , n}), using a PRF f(·), a PRP _(·), a challenge key kchal
and a master permutation key KPRP . Specifically, to
generate the ith token for server j, the user acts as follows:
1) Derive a random challenge value αi of GF(2p) by αi=
fkchal(i) and a permutation key k(i)

prp based on KPRP.
2) Compute the set of r randomly-chosen indices:
{IqЄ [1, ..., l]|1 ≤ q ≤ r},where Iq = k(i)

prp (q).
3) Calculate the token as:
v(j)

i =Σ
r
q=1α

q
i*G(j)[Iq], where G(j)[Iq]=g(j)

Iq.

Note that v(j)

i , which is an element of GF(2p) with small
size, is the response the user expects to receive from server
j when he challenges it on the specified data blocks.
After token generation, the user has the choice of either
keeping the pre-computed tokens locally or storing them in
encrypted form on the cloud servers. In our case here, the
user stores them locally to obviate the need for encryption
and lower the bandwidth overhead during dynamic data
operation which will be discussed shortly.The details of
token generation are shown in Algorithm 1.
Once all tokens are computed, the final step before file
distribution is to blind each parity block g(j)

i in (G(m+1), . . .
,G(n)) by
g(j)

i ← g(j)
i + fkj (sij), i Є {1, . . . , l},

where kj is the secret key for parity vector G(j) (j Є {m + 1,
. . . , n}). This is for protection of the secret matrix P. After
blinding the parity information, the user disperses all the n
encoded vectors G(j) (j Є {1, . . . , n}) across the cloud
servers S1, S2, . . . , Sn.
3.2 File Retrieval and Error Recovery
Since our layout of file matrix is systematic, the user can
reconstruct the original file by downloading the data
vectors from the first m servers, assuming that they return
the correct response values. Notice that our verification
scheme is based on random spot-checking, so the storage
correctness assurance is a probabilistic one. However, by
choosing system parameters (e.g., r, l, t) appropriately and
conducting enough times of verification, we can guarantee
the successful file retrieval with high probability.
Algorithm 2 Error Recovery
 1: procedure
 % Assume the block corruptions have been detected
among the specified r rows;
 % Assume s ≤ k servers have been identified misbehaving
2: Download r rows of blocks from servers;
3: Treat s servers as erasures and recover the blocks.
4: Resend the recovered blocks to corresponding servers.
5: end procedure
On the other hand, whenever the data corruption is
detected, the comparison of pre-computed tokens and
received response values can guarantee the identification
of misbehaving server(s) (again with high probability).
Therefore, the user can always ask servers to send back
blocks of the r rows specified in the challenge and

CH.Venkata lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5374-5377

www.ijcsit.com 5375

regenerate the correct blocks by erasure correction, shown
in Algorithm 2, as long as the number of identified
misbehaving servers is less than k. (otherwise, there is no
way to recover the corrupted blocks due to lack of
redundancy, even if we know the position of misbehaving
servers.) The newly recovered blocks can then be
redistributed to the misbehaving servers to maintain the
correctness of storage.

4. IMPLEMENTATION AND RESULTS
Step 1: Start the server

Step 2: Now go to admin page. Enter user name and
password and click login button

Step 3: Main form will be displayed where the users are
created. Create a user by filling the details in the below
page.

Step 4: After filling the details clisk submit button. Inorder
to view the list of users go to view users option and list of
users will be displayed as shown below:

Step 5: Now Start user to perform the transactions. First
enter the userid and password and click connect button.

A user form will be displayed. Go to upload option and
upload the file

Step 6: Now the user uploads the file by browsing the file
from the drive

Click on upload button. Now the file will be stored in temp
folder

Step 7: Now goto admin page and view the uploaded files.
And specify the destination path where the files must be
saved

press the upload button, now the file has been moved from
temp folder to E drive.

Step 8: If the file has been deleted or modified, there is a
chance to regenerate the original file using regenerate
option. Enter the filename in regenerate form and specify
the destination in order to save the file at that specified
location.

CH.Venkata lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5374-5377

www.ijcsit.com 5376

Step 9: If the file has been regenerated successfully, a
successful message will be displayed as shown below

5. CONCLUSION
To achieve the assurances of cloud data integrity and
availability and enforce the quality of dependable cloud
storage service for users, we propose an effective and
flexible distributed scheme with explicit dynamic data
support, including block update, delete, and append. By
utilizing the homomorphic token with distributed
verification of erasure-coded data, our scheme achieves the
integration of storage correctness insurance and data error
localization, i.e., whenever data corruption has been
detected during the storage correctness verification across
the distributed servers, we can almost guarantee the
simultaneous identification of the misbehaving server(s).

Considering the time, computation resources, and even the
related online burden of users, we also provide the
extension of the proposed main scheme to support
third-party auditing, where users can safely delegate the
integrity checking tasks to third-party auditors and be
worry-free to use the cloud storage services. Through
detailed security and extensive experiment results, we
show that our scheme is highly efficient and resilient to
Byzantine failure, malicious data modification attack, and
even server colluding attacks.

REFERENCES

1. C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage
security in cloud computing,” in Proc. of IWQoS’09, July 2009.

2. C. Wang, K. Ren, W. Lou, and J. Li, “Towards publicly auditable
secure cloud data storage services,” IEEE Network Magazine, vol.
24, no. 4, pp. 19–24, 2010.

3. http://eprint.iacr.org/
4. http://aws.amazon.com/
5. https://www.sun. com/offers/details/sun transparency.xml/
6. Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public

verifiability and data dynamics for storage security in cloud
computing,” in Proc. of ESORICS’09, volume 5789 of LNCS.
Springer-Verlag, Sep. 2009.

Prof Jammi Ashok

Currently working as Professor and Head at Gurunanak Institute
of Technology, Hyderabad, A.P, INDIA. He has received his B.E.
Degree from Electronics and Communication Engineering from
Osmania University and M.E. with specialization in Computer
Technology from SRTMU, Nanded, INDIA.
His main research interest includes neural networks,
Bioinformatics and Artificial Intelligence. He has been involved
in the organization of a number of conferences and workshops. He
has been published more than 35 papers in International journals
and conferences. He is currently doing his Ph.D from Anna
University and submitted thesis.

CH.Venkata lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5374-5377

www.ijcsit.com 5377

